Diversity and abundance of soil macroinvertebrates along a contamination gradient in the Central Urals, Russia

Données d'échantillonnage
Dernière version Publié par Institute of Plant and Animal Ecology (IPAE) le févr. 23, 2022 Institute of Plant and Animal Ecology (IPAE)
Date de publication:
23 février 2022
Licence:
CC-BY 4.0

Téléchargez la dernière version de la ressource en tant qu'Archive Darwin Core (DwC-A), ou les métadonnées de la ressource au format EML ou RTF :

Données sous forme de fichier DwC-A (zip) télécharger 340 enregistrements dans Anglais (2 MB) - Fréquence de mise à jour: inconnue
Métadonnées sous forme de fichier EML télécharger dans Anglais (27 KB)
Métadonnées sous forme de fichier RTF télécharger dans Anglais (20 KB)

Description

The dataset includes a 2004 census for topsoil macroinvertebrates of spruce-fir forests along a pollution gradient in the Central Urals. The dataset describes soil macrofauna’s abundance and community structure (list of supraspecific taxa, list of species for most abundant taxa, and taxa or species abundance) in areas differing with toxic metal (Cu, Zn, Pb, and Cd) contamination levels from the Middle Ural Copper Smelter (heavily polluted, moderately polluted, and unpolluted areas). The dataset consists of 340 sampling events (= samples, corresponding to upper and lower layers of the soil monoliths), and 64 658 occurrences (abundance of invertebrate taxa per sample (soil layer), both present and absent). Arachnids, Carabids (adults), Elaterids (juveniles), Chilopods, Diplopods, Gastropods, Staphylinids (adults), and Lmbricids were identified to species level. In contrast, Mermithids, Enchytraeids, Lepidopteran larvae, Dipteran larvae, Hemipterans, Hymenopterans, and some other insects were identified to family or order levels. In total, 8 430 individuals of soil macroinvertebrates were collected in two soil layers (organic and organic-mineral horizons), including 1 046 Arachnids (spiders and harvestmen), 45 Carabids, 300 Elaterids, 529 Myriapods, 741 Gastropods, 437 Staphylinids, 623 Lumbricids, and 4 709 other invertebrates. The presence-absence data on each taxon is provided for each sampling event. The dataset contains information helpful for long-term ecotoxicological monitoring of forest ecosystems and contributes to studying soil macrofauna diversity in the Urals.

Enregistrements de données

Les données de cette ressource données d'échantillonnage ont été publiées sous forme d'une Archive Darwin Core (Darwin Core Archive ou DwC-A), le format standard pour partager des données de biodiversité en tant qu'ensemble d'un ou plusieurs tableurs de données. Le tableur de données du cœur de standard (core) contient 340 enregistrements.

1 tableurs de données d'extension existent également. Un enregistrement d'extension fournit des informations supplémentaires sur un enregistrement du cœur de standard (core). Le nombre d'enregistrements dans chaque tableur de données d'extension est illustré ci-dessous.

Event (noyau)
340
Occurrence 
64658

Cet IPT archive les données et sert donc de dépôt de données. Les données et métadonnées de la ressource sont disponibles pour téléchargement dans la section téléchargements. Le tableau des versions liste les autres versions de chaque ressource rendues disponibles de façon publique et permet de tracer les modifications apportées à la ressource au fil du temps.

Versions

Le tableau ci-dessous n'affiche que les versions publiées de la ressource accessibles publiquement.

Comment citer

Les chercheurs doivent citer cette ressource comme suit:

Vorobeichik E, Nesterkov A, Ermakov A, Zolotarev M, Grebennikov M (2022): Diversity and abundance of soil macroinvertebrates along a contamination gradient in the Central Urals, Russia. v1.5. Institute of Plant and Animal Ecology (IPAE). Dataset/Samplingevent. https://ipt.ipae.uran.ru/resource?r=lepc_soilmacrofauna_2004&v=1.5

Droits

Les chercheurs doivent respecter la déclaration de droits suivante:

Ce travail est sous licence Creative Commons Attribution (CC-BY) 4.0.

Enregistrement GBIF

Cette ressource a été enregistrée sur le portail GBIF, et possède l'UUID GBIF suivante : 61e92984-382b-4158-be6b-e391c7ed5a64.  Institute of Plant and Animal Ecology (IPAE) publie cette ressource, et est enregistré dans le GBIF comme éditeur de données avec l'approbation du Participant Node Managers Committee.

Mots-clé

Samplingevent; soil macrofauna; earthworms; millipedes; centipedes; spiders; harvestmen; wireworms; ground beetles; rove beetles; mollusks; species diversity; population density; community composition; resistance; forest litter; industrial pollution; heavy metals; copper smelter

Contacts

Evgenii Vorobeichik
  • Fournisseur Des Métadonnées
  • Créateur
  • Personne De Contact
  • principal investigator
Institute of plant and animal ecology, UB RAS
Yekaterinburg
RU
Alexey Nesterkov
  • Personne De Contact
  • researcher
Institute of plant and animal ecology, UB RAS
Yekaterinburg
RU
Alexander Ermakov
  • Créateur
  • senior researcher
Institute of plant and animal ecology, UB RAS
Yekaterinburg
RU
Maxim Zolotarev
  • Créateur
  • researcher
Institute of plant and animal ecology, UB RAS
Yekaterinburg
RU
Maxim Grebennikov
  • Créateur
  • research engineer
Institute of plant and animal ecology, UB RAS
Yekaterinburg
RU
Alexey Nesterkov
  • Personne De Contact
Institute of plant and animal ecology, UB RAS
Yekaterinburg
RU

Couverture géographique

The study area is situated in the lowest uplands of the Urals (altitudes are 150–400 m above sea level) and belongs to the southern taiga subzone. Primary coniferous forests (Picea abies, Abies sibirica, and Pinus sylvestris) and secondary deciduous forests (Betula pendula, Betula pubescens, and Populus tremula) prevail. Spruce and fir forests with nemoral flora on loam or heavy loam soils dominate on the western slope of the Urals, and pine forests on sandy loam or light loam soils prevail on the eastern side. Study areas are located in spruce-fir forests. The ground vegetation layer is dominated by Oxalis acetosella, Aegopodium podagraria, Gymnocarpium dryopteris, Dryopteris carthusiana, Asarum europaeum, Maianthemum bifolium, Cerastium pauciflorum, and Stellaria holostea. Soil formation occurs on eluvium and eluvium-diluvium of bedrock metamorphic rocks (shales, sandstones, quartzites, and silicified limestones). Soil cover is formed mainly by soddy-podzolic soils (Albic Retisols, Stagnic Retisols, and Leptic Retisols), burozems (Haplic Cambisols), and grey forest soils (Retic Phaeozems). Zoogenically active humus form (Dysmull) prevails (Korkina and Vorobeichik, 2021). The climate is warm-summer humid continental, Dfb according to Köppen-Geiger classification (Peel et al., 2007). The average annual air temperature is +2.0 °С; the average annual precipitation is 550 mm; the warmest month is July (+17.7 °С) and the coldest month is January (–14.2 °С) (mean values for the last 40 years, 1975–2015, according to the data of the nearest meteorological station in Revda). The snowless period is about 215 days (from April to October), the maximum height of the snow cover is about 40–60 cm. The Middle Ural Copper Smelter (MUCS), located in the suburbs of Revda, 50 km west of Yekaterinburg, has been in operation since 1940. The primary toxic emissions are gaseous compounds of sulfur, fluorine, and nitrogen and dust particles with adsorbed heavy metals (Cu, Pb, Zn, Cd, Fe, Hg) and metalloids (As). The annual amount of emissions in 1980 reached 225 × 103 t, being reduced to 148 × 103 t in 1990 and 106 × 103 t in 1991. The subsequent reduction was more significant: to 96 × 103 t in 1994, 63 × 103 t in 2000, 28 × 103 t in 2004, and, after an overhaul of the smelter in 2010, to only 3–5 × 103 t per year (Vorobeichik, Kaigorodova, 2017). Current concentrations of heavy metals in the forest litter near the MUCS are very high: Cu, 3500–5500 μg/g; Pb, 2500 μg/g; Cd, 17–20 μg/g; Zn, 600–900 μg/g; i.e., they exceed the background values by factors of 100, 40, 7, and 3, respectively (Vorobeichik, Pishchulin, 2016; Korkina, Vorobeichik, 2018). In the moderately polluted areas, exposure to emissions from MUCS has resulted in suppressed growth of trees (decrease in the height, diameter, and stock of tree stand) and ground vegetation (decrease in species diversity and productivity). Closer to the MUCS, in the heavily polluted area, the spruce-fir forest has survived in fragments with herbaceous communities of relatively poor species composition (Equisetum sylvaticum, Deschampsia caespitosa, Tussilago farfara, Agrostis capillaris) and a moss layer formed by Pohlia nutans. Despite the significant reduction of emissions in recent years, vegetation in the most polluted areas is not yet been recovered. However, some positive changes have already occurred in the moderately polluted zone (Vorobeichik et al., 2014). Apart from the metal accumulation and increased acidity, soil transformation manifests itself in the enhancement of the eluvial-gleying process, degradation of soil aggregates, decrease in exchangeable potassium and magnesium, increase in forest litter thickness, and shifts from zoogenically active Mull humus forms to Eumor humus forms without any signs of soil macrofauna activity (Kaigorodova, Vorobeichik, 1996; Korkina, Vorobeichik, 2016, 2018, 2021; Vorobeichik, Pishchulin, 2016).

Enveloppe géographique Sud Ouest [56,785, 59,356], Nord Est [56,905, 59,92]

Couverture taxonomique

General taxonomic coverage is 4 phyli, 7 classes, 16 orders, 39 families, 115 genera, 142 species of soil macroinvertebrates.

Phylum Annelida, Arthropoda, Mollusca, Nematoda
Class Clitellata, Arachnida, Chilopoda, Diplopoda, Insecta, Gastropoda, Enoplea
Order Crassiclitellata, Enchytraeida, Araneae, Opiliones, Geophilomorpha, Lithobiomorpha, Chordeumatida, Polyzoniida, Coleoptera, Diptera, Hemiptera, Hymenoptera, Lepidoptera, Ellobiida, Stylommatophora, Mermithida

Couverture temporelle

Date de début / Date de fin 2004-07-03 / 2004-08-16

Données sur le projet

Pas de description disponible

Titre Russia 2021
Identifiant N-Eurasia-Russia2021

Les personnes impliquées dans le projet:

Dmitry Schigel

Méthodes d'échantillonnage

Soil macroinvertebrates were collected in July and August of 2004. Sampling plots 10 × 10 m in size were established in nine study sites. Soil macrofauna was hand-sorted out of soil monoliths 20 × 20 cm in area and 25–30 cm in depth depending on the presence of macroinvertebrates. A total of 340 samples and 8 430 individuals of soil macroinvertebrates were collected over 2004 year.

Etendue de l'étude Study sites were located on gentle slopes of ridges in spruce-fir forest. A total of nine study sites (=locationID) were established, corresponding to areas with different pollution levels. The number of sampling plots within each study site ranged from one to three; 20 samples were collected from each sampling plot. The study of soil macrofauna is part of an ongoing long-term monitoring project; the dataset covers the period from July 03, 2004, to August 16, 2004.
Contrôle qualité All soil macrofauna specimens were stored in the depository of the Laboratory of Population and Community Ecotoxicology of the Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences (IPAE UB RAS). The specialists of the IPAE also performed species identification of most of the taxa: arachnids, chilopods, and diplopods were identified by Maxim P. Zolotarev; carabids and elaterids were identified by Alexander I. Ermakov; gastropods were identified by Maxim E. Grebennikov. Species identification of the staphylinids was carried out by Viktor B. Semenov from the Institute of Medical Parasitology, Tropical and Vector-borne Diseases named after E.I. Martsinovsky, Moscow. Earthworm species were identified by Elena V. Golovanova from the Laboratory of Invertebrate Systematics and Ecology of Omsk State Pedagogical University, Omsk.

Description des étapes de la méthode:

  1. Fieldwork and processing of soil monoliths. Soil macroinvertebrates were collected in July and August of 2004. Sampling plots 10 × 10 m in size were established in nine study sites. Soil macrofauna was hand-sorted out of soil monoliths 20 × 20 cm in area and 25–30 cm in depth depending on the presence of macroinvertebrates. The sampling effort (time interval for extracting one soil monolith from the sampling plot) was approximately 5 minutes. Ten monoliths were collected from each plot randomly, excluding nearby trunk areas with a radius of 0.5–1 m around large trees (more than 30 cm in diameter) and any visible pedoturbations. During sampling, monoliths were divided into two layers: the O horizon (organic) and A horizon (organic-mineral). Monoliths were placed in plastic bags (separately for the layers), delivered to the laboratory, and stored before processing at 12°C for no more than five days (as a rule, 1–2 days). The collected invertebrates were wet-preserved in 70% ethanol; earthworms were carefully washed with water, fixed with 10% formalin, and then wet-preserved in 70% ethanol. Ants and relatively large microarthropods (springtails, oribatid mites) were left out of account. A total of 340 samples and 8 430 individuals of soil macroinvertebrates were collected over 2004 year.

Données de collection

Nom de la collection lepc_soilMacrofauna_2004
Méthode de conservation des spécimens Alcohol,  Formalin

Citations bibliographiques

  1. Kaigorodova S.Yu., Vorobeichik E.L., 1996. Changes in certain properties of grey forest soil polluted with emissions from a copper-smelting plant. Russian Journal of Ecology. Vol. 27, no. 3, pp. 177–183.
  2. Korkina, I.N., Vorobeichik, E.L., 2016. The humus index: A promising tool for environmental monitoring. Russian Journal of Ecology. Vol. 47, no. 6, pp. 526–531. https://doi.org/10.1134/S1067413616060084
  3. Korkina, I.N., Vorobeichik, E.L., 2018. Humus index as an indicator of the topsoil response to the impacts of industrial pollution. Applied Journal of Soil Ecology, Vol. 123, pp. 455–463. https://doi.org/10.1016/j.apsoil.2017.09.025
  4. Korkina, I.N., Vorobeichik, E.L., 2021. Non-typical degraded and regraded humus forms in metal-contaminated areas, or there and back again. Geoderma 404, 115390. https://doi.org/10.1016/j.geoderma.2021.115390
  5. Peel, M.C., Finlayson, B.L., McMahon, T.A., 2007. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences 11, 1633–1644. https://doi.org/10.5194/hess-11-1633-2007
  6. Vorobeichik, E.L. Pishchulin, P.G., 2016. Industrial pollution reduces the effect of trees on forming the patterns of heavy metal concentration fields in forest litter. Russian Journal of Ecology. Vol. 47, no. 5, pp. 431–441. https://doi.org/10.1134/S1067413616050155
  7. Vorobeichik, E.L., Trubina, M.R., Khantemirova, E.V., Bergman, I.E., 2014. Long-term dynamic of forest vegetation after reduction of copper smelter emissions. Russian Journal of Ecology. Vol. 45, no. 6, pp. 498–507. https://doi.org/10.1134/S1067413614060150
  8. Vorobeichik E, Nesterkov A, Ermakov A, Zolotarev M, Grebennikov M (2022) Diversity and abundance of soil macroinvertebrates along a contamination gradient in the Central Urals, Russia. Biodiversity Data Journal 10: e76968. https://doi.org/10.3897/BDJ.10.e76968

Métadonnées additionnelles

Identifiants alternatifs 61e92984-382b-4158-be6b-e391c7ed5a64
https://ipt.ipae.uran.ru/resource?r=lepc_soilmacrofauna_2004